關于我們 | 聯系我們 | 定制服務 | 訂購流程 | 網站地圖 設為首頁 | 加入收藏

熱門搜索:汽車 行業(yè)研究 市場研究 市場發(fā)展 食品 塑料 電力 工業(yè)控制 空調 乳制品 橡膠

當前位置: 主頁 > 產業(yè)觀察 > 電子電器 >  2013年國內LED產業(yè)發(fā)展趨勢分析

2013年國內LED產業(yè)發(fā)展趨勢分析

Tag:LED  

中國產業(yè)研究報告網訊:

    內容提要:未來LED芯片面臨大型化發(fā)展時,熱歪斜問題勢必變成無法忽視的困擾,針對上述問題,具備接近LED芯片的熱膨脹系數的陶瓷,可說是對熱歪斜對策非常有利的材料。

    一,高功率LED的封裝基板發(fā)展趨勢

  長久以來顯示應用一直是led發(fā)光元件主要訴求,并不要求LED高散熱性,因此LED大多直接封裝于一般樹脂系基板,然而2000年以后隨著LED高輝度化與高效率化發(fā)展,尤其是藍光LED元件的發(fā)光效率獲得大幅改善,液晶、家電、汽車等業(yè)者也開始積極檢討LED的適用性。

  技術上高功率LED封裝后的商品,使用時散熱對策實為非常棘手,而此背景下具備高成本效率,且類似金屬系基板等高散熱封裝基板的產品發(fā)展動向,成為LED高效率化之后另1個備受囑目的焦點。

1,高效率化 金屬基板備受關注

  硬質金屬系封裝基板是利用傳統(tǒng)樹脂基板或是陶瓷基板,賦予高熱傳導性、加工性、電磁波遮蔽性、耐熱沖擊性等金屬特性,構成新世代高功率LED封裝基板。

  高功率LED封裝基板是利用環(huán)氧樹脂系接著劑將銅箔黏貼在金屬基材的表面,透過金屬基材與絕緣層材質的組合變化,制成各種用途的LED封裝基板。

  高散熱性是高功率LED封裝用基板不可或缺的基本特性,因此上述金屬系LED封裝基板使用鋁與銅等材料,絕緣層大多使用高熱傳導性無機填充物(Filler)的環(huán)氧樹脂。鋁質基板是應用鋁的高熱傳導性與輕量化特性制成高密度封裝基板,目前已經應用在冷氣空調的轉換器(Inverter)、通訊設備的電源基板等領域,也同樣適用于高功率LED封裝。

  一般而言,金屬封裝基板的等價熱傳導率標準大約是2W/mK,為滿足客戶4~6W/mK高功率化的需要,業(yè)者已經推出等價且熱傳導率超過8W/mK的金屬系封裝基板。由于硬質金屬系封裝基板主要目的是支持高功率LED封裝,因此各封裝基板廠商正積極開發(fā)可以提高熱傳導率的技術。

  硬質金屬系封裝基板的主要特征是高散熱性。高熱傳導性絕緣層封裝基板,可以大幅降低LED芯片的溫度。此外基板的散熱設計,透過散熱膜片與封裝基板組合,還望延長LED芯片的使用壽命。

  金屬系封裝基板的缺點是基材的金屬熱膨脹系數非常大,與低熱膨脹系數陶瓷系芯片元件焊接時情形相似,容易受到熱循環(huán)沖擊,如果高功率LED封裝使用氮化鋁時,金屬系封裝基板可能會發(fā)生不協(xié)調的問題,因此必須設法吸收LED模塊各材料熱膨脹系數差異造成的熱應力,藉此緩和熱應力進而提高封裝基板的可靠性。

    • 2,封裝基板業(yè)者積極開發(fā)可撓曲基板

  可撓曲基板的主要用途大多集中在布線用基板,以往高功率晶體管與IC等高發(fā)熱元件幾乎不使用可撓曲基板,最近幾年液晶顯示器為滿足高輝度化需求,強烈要求可撓曲基板可以高密度設置高功率LED,然而LED的發(fā)熱造成LED使用壽命降低,卻成為非常棘手的技術課題,雖然利用鋁板質補強板可以提高散熱性,不過卻有成本與組裝性的限制,無法根本解決問題。

  高熱傳導撓曲基板在絕緣層黏貼金屬箔,雖然基本結構則與傳統(tǒng)撓曲基板完全相同,不過絕緣層采用軟質環(huán)氧樹脂充填高熱傳導性無機填充物的材料,具有與硬質金屬系封裝基板同等級8W/mK的熱傳導性,同時兼具柔軟可撓曲、高熱傳導特性與高可靠性。此外可撓曲基板還可以依照客戶需求,將單面單層面板設計成單面雙層、雙面雙層結構。

  高熱傳導撓曲基板的主要特征是可以設置高發(fā)熱元件,并作三次元組裝,亦即可以發(fā)揮自由彎曲特性,進而獲得高組裝空間利用率。

  根據實驗結果顯示使用高熱傳導撓曲基板時,LED的溫度約降低100C,此意味溫度造成LED使用壽命的降低可望獲得改善。事實上除了高功率LED之外,高熱傳導撓曲基板還可以設置其它高功率半導體元件,適用于局促空間或是高密度封裝等要求高散熱等領域。

  有關類似照明用LED模塊的散熱特性,單靠封裝基板往往無法滿足實際需求,因此基板周邊材料的配合變得非常重要,例如配合3W/mK的熱傳導性膜片,可以有效提高LED模塊的散熱性與組裝作業(yè)性。

  3,陶瓷封裝基板對熱歪斜非常有利

  如上所述白光LED的發(fā)熱隨著投入電力強度的增加持續(xù)上升,LED芯片的溫升會造成光輸出降低,因此LED封裝結構與使用材料的檢討非常重要。以往LED使用低熱傳導率樹脂封裝,被視為影響散熱特性的原因之一,因此最近幾年逐漸改用高熱傳導陶瓷,或是設有金屬板的樹脂封裝結構。LED芯片高功率化常用方式分別包括了:LED芯片大型化、改善LED芯片發(fā)光效率、采用高取光效率封裝,以及大電流化等等。

  雖然提高電流發(fā)光量會呈比例增加,不過LED芯片的發(fā)熱量也會隨著上升。因為在高輸入領域放射照度呈現飽和與衰減現象,這種現象主要是LED芯片發(fā)熱所造成,因此LED芯片高功率化時,首先必須解決散熱問題。

  LED的封裝除了保護內部LED芯片之外,還兼具LED芯片與外部作電氣連接、散熱等功能。LED封裝要求LED芯片產生的光線可以高效率取至外部,因此封裝必須具備高強度、高絕緣性、高熱傳導性與高反射性,令人感到意外的是陶瓷幾乎網羅上述所有特性,此外陶瓷耐熱性與耐光線劣化性也比樹脂優(yōu)秀。

  4,傳統(tǒng)高散熱封裝是將LED芯片設置在基板上

  屬基板上周圍再包覆樹脂,然而這種封裝方式的金屬熱膨脹系數與LED芯片差異相當大,當溫度變化非常大或是封裝作業(yè)不當時極易產生熱歪斜,進而引發(fā)芯片瑕疵或是發(fā)光效率降低。

  未來LED芯片面臨大型化發(fā)展時,熱歪斜問題勢必變成無法忽視的困擾,針對上述問題,具備接近LED芯片的熱膨脹系數的陶瓷,可說是對熱歪斜對策非常有利的材料。

  提高LED高熱排放至外部的熱傳達特性,以往大多使用冷卻風扇與熱交換器,由于噪音與設置空間等諸多限制,實際上包含消費者、照明燈具廠商在內,都不希望使用上述強制性散熱元件,這意味著非強制散熱設計必須大幅增加框體與外部接觸的面積,同時提高封裝基板與框體的散熱性。

  具體對策如:高熱傳導銅層表面涂布利用遠紅外線促進熱放射的撓曲散熱薄膜等,根據實驗結果證實使用該撓曲散熱薄膜的發(fā)熱體散熱效果,幾乎與面積接近散熱薄膜的冷卻風扇相同,如果將撓曲散熱薄膜黏貼在封裝基板、框體,或是將涂抹層直接涂布在封裝基板、框體,理論上還可以提高散熱性。 

    有關高功率LED的封裝結構,要求能夠支持LED芯片磊晶接合的微細布線技術;有關材質的發(fā)展,雖然氮化鋁已經高熱傳導化,但高熱傳導與反射率的互動關系卻成為另1個棘手問題,一般認為未來若能提高氮化鋁的熱傳導率,對高功率LED的封裝材料具有正面助益。